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I. Introduction

as a result of the tidal influence of the s
the outer parts of the discs are more

viscosity) these discs are unstable with
Conse-quently, from theoretical grounds,
considerations accretion discs with constant eccentricity e.

II. Accretion disc model

rhe trajecrories of ,h.Lfl"lit'ffffii::?t:.::fi:ffi1llL$T,5Hli,11llr,"n':'33r1'.Ti
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ellipses which are described by two quantities: the eccentricity e and the focal
parameter p. The origin of the coordinate system coincides with the centre of the
primary start around which the disc particles slowly spiral in by nearly Keplerian
brbits. We restrict our treatment of ihe problem to the simple case in which the
apse lines of all orbits are in line with each other, i.e., .the semimajor_axis of thr:
eilipses lie on the abscissa. Consequently, in polar coordinates (r, rp) the position
of any particle is given by
(1) r= plll+ecos<P).

The evolution of the accretion disc may be determined from the energy and
angular momentum exchange between adjacent fluid contours caused by the vis-
cosity. It should be emphasized that unlike the elliptical orbits in selestiatr mechan-
ics, self-intersecting adjacent Keplerian orbits in gaseous discs are excluded from
considerations. Another important feature is that the focal parameter p and the
eccentricity e are nol, generally speaking, independent variables of the accretion
disc model. For example, Lyubarskij et al. [7], solving the problem of stationany
viscous accretion in eccentric discs, have obtained a second order differential equa-
tion for e:e (p).Solving it numerically, they conclude that three classes of solu-
tions exist (see Figs. 2,4 and 5 from [7]). In particular, it is evident that the solu-
tion tz:const is available - a result which is also confirmed analitically by Lyubarskij
et al. l7l. The most attractive property of the accretion discs with an arbitrary
constant eccentricity of the orbiting particles is the possibility to exist for an'y
reasonable viscosity law dependence on the azimuthal angle <p. Consequently, therr:
is not need to specify viscosity in details when we are dealing with constant eccen-
tricity discs.

Following the notations of Lyubarskij et al. [7], we shall use as nonorthogonal
curvilinear Eulerian coordinates the focal parameter p and the azimuthal angle <p,.

Since the evolution of the nearly Keplerian accretion discs with time is slow in
comparison with the Keplerian time-scale, it is easy to show that in the case of
constant e (i.e., defdp = €, =0 ) the disc surface density2(p,q,e,t) may be factor-

>(p,q,e,t)= f (p,e1Y Ji Vr,

c = p2 I (t+ 
" "o. 

,p)a

ized [71
(2)
where

(3)

is thr: determinant of the metric tensor and

(4) yo =(cruf f)tt2 $+ecosq)2
is the contravariant g-component of the Keplerian velocity' G and M arc the
Newton's gravitational constant and the mass of the compact object in the disc
centre, respectively. Our purpose in this paper is to obtain in the stationary case

6f lat =dDldt = Q) an explicit expression for the unknown function/ (p, e) using
a'ri ippropriate vidcosity law. In their investigation Lyubarskij et al. [7] introduce
an arrxiliary function Y (e, q) through the relation

(5) srPoPe =-]{cuilU2y(",q),
where P:p is the contravariantp-component of the radius vector 7 (for er:0) an'J

(6) opq = -{$" 0 *, .or e)f r +L, cos,p*Ir'(1*+ "or' 
\ | q I

"\P ) 
"L 3 Y'3-\"---q)+t' cosql'

(for e,:0) is the contravariant p9-component of the shear tensor cik (i, k:p, 9'5.
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Taking into account equalities (5) and (6), it is easy to compute
../ ^ \ L ,"l(7) Ykp =0,<p)=l(t*".or.pf'(l+ e2 +iecos,p+4e2cos2rp*"r"or,p).

e disc evolution is determined onlv bv
here q is the intergrated over the disc

noted that according to Syer and Clarke's
ent q is a separate function of streamline
ge of the eccentricity e with the orbital
erfect differential. From this follows that

unreal description of the accretion.

III. Power law viscositv

We = Bt,'viscositylaw, where the multiplier onstant values.
Integrating over p the equa barskij 

"t it. tilhave obtained for the case sh"aiulscositi
coefficient 1 and the mass accretion rate M :

(8)

where D (P, n, e) is an integration const
and.g. In their investigatioh Lyubarskij
results to these parts of the disc which-
for p large enough in order to be satis

r r-l

ll't v (,,,p)a,pl
11 1l- r" | ,

JLb (Jsvql )
where the mass acc4etion rate M is related to the surface density I. In this paper
we,shall consider M as a constant par Lmeter of the model, nuuirrg il -i;A;'h;;

time / and lhe foc,al parameter p.
t the disc, \,f gv o 

)" = (Ctt 
1 ,1"t'

to evaluate only the intergrated
condly, we have exact analytical

(1 0)

(11)

2n

! (t + 
"cos 

<p) -t d,Q = n Q * "r)( - "z)-stz,0'
2n

J cos g (l + e cos <p)-3 drp = -3ne (t - "r).t, ,
0



2T | ^\r ^\ .(r2) I .or' ,p(t+"cos <p)-t dg=nl+z"')1'e2)-s12.
0

Finally, according to the above relations, we simply have for e,==0

2n / ^\ ,r^

! v (", rp) d<p -- 2n \t - rt ) . vz. correspondingly:

.ttt ( 
^ r , .-l'l/n(r3) r(e,,,p=)=(gL\'' I +1, -o9'",all ,I p J | 3nF | ,lcup Il

. ' L I ' ))

n*,r,p,e)=+I, ffil(14)

(1 5)

These expressions illustrate the well known result that for constant eccentricity ellip-
tical discs the viscosity coefficient q and the surface density I are functions ,cn

streamlines only [5-7]. In the outer parts of the disc (for p >> D2 (8,",")f CtWtW'21

q and )become independent also on p and approach constant values:
/ 

- 

r rl/4(16) f (F,",p,4=^1cu1o[u'J;,'lznB)'
\/

(1

(1

on 17) transform
/ ' tllnlM"\'in ssi I:--: I and
l,:"F,l

n

IV Boundary conditions

In order to evaluate the integration constant D (P, n, e) it is
appropriate to utilize any physically reasonable conditions at the inner boundary
of the accretion disc. Our investigation deals with the stationary case and, conse-
quently, these conditions would also be independent on time /. Determination of
such boundary conditions may be strongly complicated if general relativistic r:f-
fects must be taken into account. But in the later case, as mentioned by Syer and
Clarke 15,l2l, differential precession leads to a ciratlarization of the inner parts
of the disc. For this reason we would expect that our supposition of consta.nt
eccentricity orbits with e + 0 throughout the disc is not strictly fulfilled. Neverthe-
less, we shall simply limit us to the Newtonian mechanics description of the inrLer
disc. But even in that case, the presence of the secondary star may cause a differern-
tial precession because of deviations from a Keplerian potential [5, 11]. We also
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neglect this possibility.and.assume that giving not very precisely the inner bound-
ary conditions, the global disc structure would not be diasticaliy affect a, -

Following the suggestion of Shakura and Sunyaev [15], we may suppose that
the viscous stress is nearly equal to zero on the lasi stable orbit wit-h p: p^,n,i.e.,
Tl@^,n, e) = 0. This condition enables us to evaluate the integration consta"ti id', ", 

u)

(1e) D (B,n,e)= tw,!c-tw p,6^

drift is transformed into a fast radial falling without energy release due to viscous
n is expected for elliptical orbits if r*n = Po;n < 3R",where
e type orbits to another type occures at tffiri""nir.. A"-

,tl; iJl;:tttons 
for viscositv and disc surface densitv can be

(20) nb,4=Ef'-f--)-''')=1r-." G)f,-[-)-"'-l5Tc L (p^, 1 .l |[rm") I

(2t) > (p, 
") = (#)''' f (p, 

") =(ffi|', 
[, 
-(*\'','f'','

I r Ytlzlltn
=x,o*G)lt-l-4 i I

L (P*"i 
I

Obviously, the vanishing of the visc
implies also vanishing of the disc surfa

en the assumption e:const throuehout
for all disc radii. Consequently, ii may
value of the focal parameter'p, above

situation sussests tha_r it may be -"r. fJ'o.,"';"T;,tJT"l1'jl,n;3l,ii,l?,t';J,it
considered model to be given at some uaiie p:p"," which oiir"r, from the focal

ical boundary of the disc. We are able to modifv
ero density In.'in ("): \(p^in,")* 0. The result is a
e expressions:



(22) rt (p, 
") =n*u* (,) 

{t 
- ft - (>*" (, )/r",* (")f l[r-4 it' ]

r 
"U2(23) >(p,")=l#l r G*)

\/ ( -/ r-l/zlv'r
= r,"u* trl ] I - [' - (t,," (e)/r**(e)I ][ -Z- I I

t \Pmin) )

Therefore, the problem of determining of the integrafim constant D($, n, e) in
the angular momentum balance is transformed into the problem of finding of an
appropriate value of the accretion disc surface density E ianround a given stream-
line. This may be more useful situation when the results (n$ - (15) are applied to
concrete constant eccentricitv disc models.

V niscussion and conclusions

Our ccnsideration of elliptical ac.crailiion discs is limited to
the case of nested cofocal constant eccentricity streamlines..'We have also adopted
the approximation of a power law viscosity dependenc€ spipt', where parameters
I and n are assumed to have constant values throughouttlhre,disc. We have derived
in an explicit form analytical expressions for the surface demsity X and the integrated
over the disc thickness shear viscosity coefficient q. According to conclusions of
Syer and Clarke [5, 6], E and 1 are functions of.streamlines only. Even more, .for

the outer disc regions lp> D'$,",")f cuu2) these rymntities approach con-
stant values. Formulae (20) - (23) can easily be rewritten funthe usual polar coordi-
nates(r,<p)if thefocalparameterpisreplacedbymeansof (1): p:r(I*e cosrp).
Having in mind that the expected values of n lie approximalt€ly between 0 and 3,, a
weak dependence on g appears in the expressions for {r" p) and n(r, g). It shorrld
be noted that giving of the disc boundary conditions at its iimer part may possibly
strike with difficulties (like the Lightman - Eardley instalb,iJiliity [16]), in addition to
the other approaches which limit the application of (20) - ((23) to the real accre-
tion discs. For example, the disc may not have a mirror sjllmmetry with respect to
the direction of pericentre-apocentre, which in our treatrmemt is assumed to be the
same for all ellipces, As pointed out by Syer and Clarke ffi when the eccentricity
exceeds a critical value, the flow is relatively thickened forr a section of the flow
downstream of apocentre and, as a consequence, a pr<rgnade precession of the
streamline will follow. They have also mentioned that it is mrot clear at present time
whether this mechanism of circularization works for all parits of the accretion disc.

Nowadays it is not doubtfull that elliptical accretiom id,iscs may exist at le,ast
around some of the known compact objects, preferably in close binary stellar s'ys-
tems. The analytical expressions derived in this paper would be usefull for compru-
tation of the theoretical disc brightness distributions and profiles of disc spectral
lines. The later seem highly asymmetric depending on the disc eccentricity e and
the disc inclination to the observer's line of sight [5, 9]- Changes of the accretion
disc characteristics during the orbital motion will, in principle, give additional
possibilities for verification of the approaches made in the considered model, e,,g.,

constant eccentricity e alortg ttre disc radius, stationarity, avetaging of the disc
parameters over its height, etc.
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Ennurz.IHrl aKpeulroHHll ArrcKoBe c rlocroflHen
eKcrleHrprrrlzrer. l. cttyuair n: FI"

fluuumtp fluuumpoe

(Pesrorvre)

floly.r e nu c a ro rrHlr a:aarvn vqnkr krcp a3v 3 a rr oB bpxH o c rH ara
rlJlrrHocr E u roe@uql{eHTa Ha c.qBI,IroBI,Lf, BlrcKo3nrer n 3a enrrrrrr.rrrHr,r aKpeq14oHHtr
AI{cKoBe c rlocro.flHeH eKcIIeHTprrqI{TeT e Ha Ko$oKaJIHr4Te T9K9BLI Irrr1vu Ha
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qacrr,rqr,rre. flpe4noloxeHa e anp[opHo creleuHara 3aBnckrMocr n = BXa c
nocro.qHHr,r napaMerpr,r F , n,Brs srHlr ure qacrv Ha $vrc](ia X r,r 11 ce crf erraxr
KbM- rlocrotHHl{ 3HaqeHllts, 3aBl,Icequ or cKopocrra Ha. aKpellrl.s Ha BerrlecrBo
M,B, n u e.

Hai-nrrpeuruara o6racr Ha Ar,rcra ce xapaKTepHgr4pa c 6aruo HaMarsBarrlu
X " n.B nocne4Hnt cttyua{ e BbBeAeH eAr,rH AonbJrHr,rreJreH napauerrp (raro
eAHO rpaHr,rrrHo ycnoBue) -x*t",rofiro 3aAaBa [oBspxHocrHara [JrsrHocr npu
Mr{HI,rMaJrHO 3HaqeH[e na Qoxannufl [apaMerSp Irin. Pagfr.eAaHu.f,T MoAeJI Ha
ar.fperlr{oHeH Ar,rcK e Banr{AeH IIpu AorrycKaHero Ha crarllIoHapHa aKperlu.s
M : const.
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