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1. Introduction

In the majority of papers which deal with the accretion discs,
it is a priori assumed that the disc particles are moving around the primary star on
circular orbits [1, 2]. Nevertheless, there have been performed theoretical investiga-
tions, indicating that the circular motion is not the only possibility for description

“of the disc dynamics. Numerical simulations of Whitehurst and King [3, 4] have
shown development of stable eccentric accretion discs in the close binary systems
as a result of the tidal influence of the secondary star. As indicate their researches,
the outer parts of the discs are more elongated than the inner regions. This is
naturally explained by the greater value of the tidal force at large disc radii. Ana-
lytical searches of Syer and Clarke [5, 6] and Lyubarskij et al. [7] are concentrated
over the discs for which eccentricity e does not depend on the disc radius . In
particular, Lyubarskij et al. [7] prove that the case e=const may be realized under
quite general dependence of the viscosity law on the azimuthal angle . It should
also be noted that in the later paper stability analysis of the circular nonstationary
accretion discs leads to the conclusion that for some viscosity laws (e.g., for o-
viscosity) these discs are unstable with respect to the growth of the eccentricity.
Consequently, from theoretical grounds, it is not unreasonable to include into our
considerations accretion discs with constant eccentricity e, :

Observational data from some binary systems also support the possibility that
the noncircular accretion discs are realy existing objects in the nature. In particu-
lar, tidally distorted eccentric discs with time-dependent sizes are an useful tool
for explanation of the superhump period of the light-curves of SU UMa, VW Hyi,
TU Men and some other binary stars [8, 9]. Although a nonviscous accretion also

-may produce discs with nonaxisymmetric surface density distribution X [10, 117,
throughout this paper we shall limit us to viscosity governed accretion discs.

II. Accretion disc model

Let us consider a geometrically thin Kepierian accretion disc.
The trajectories of the fluid elements (i.e., streamlines) are assumed to be cofocal
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ellipses which are described by two quantities: the eccentricity e and the focal
parameter p. The origin of the coordinate system coincides with the centre of the
primary start around which the disc particles slowly spiral in by nearly Keplerian
orbits. We restrict our treatment of the problem to the simple case in which the
apse lines of all orbits are in line with each other, i.e., the semimajor axis of the
ellipses lie on the abscissa. Consequently, in polar coordinates {r, ¢) the position
of any particle is given by

) r=p/{1+ecos p).

The evolution of the accretion disc may be determined from the energy and
angular momentum exchange between adjacent fluid contours caused by the vis-
cosity. It should be emphasized that unlike the elliptical orbits in selestial mechan-
ics, self-intersecting adjacent Keplerian orbits in gaseous discs are excluded from
considerations. Another important feature is that the focal parameter p and the
eccentricity e are not, generally speaking, independent variables of the accretion
disc model. For example, Lyubarskij et al. [7], solving the problem of stationary
viscous accretion in eccentric discs, have obtained a second order differential equa-
tion for e=e {p). Solving it numerically, they conclude that three classes of solu-
tions exist (see Figs. 2, 4 and 5 from [7]). In particular, it is evident that the solu-
tion e=const is available — a result which is also confirmed analitically by Lyubarskij
et al. [7). The most attractive property of the accretion discs with an arbitrary
constant eccentricity of the orbiting particles is the possibility to exist for any
reasonable viscosity law dependence on the azimuthal angle ¢. Consequently, there
is not need to specify viscosity in details when we are dealing with constant eccen-
tricity discs.

Following the notations of Lyubarskij et al. [7], we shall use as nonorthogonal
curvilinear Eulerian coordinates the focal parameter p and the azimuthal angle ¢.
Since the evolution of the nearly Keplerian accretion discs with time is slow in
comparison with the Keplerian time-scale, it is easy to show that in the case of

constant e (i.e., ae/ap = ¢, = 0) the disc surface density Z (p, ¢, ¢, 1) may be factor-
ized [7)

@) Z(p.g.et)=fpet) e V7,
where

3) g=p*[li+ecosg)

is the determinant of the metric tensor and

(4) ve Z(GM/p3)U2 f1+ecos(p)2

is the contravariant @-component of the Keplerian velocity. G and M are the
Newton’s gravitational constant and the mass of the compact object in the disc
centre, respectively. OQur purpose in this paper is to obtain in the stationary case
(8)"/3: =9%/ot = 0) an explicit expression for the unknown function f (p, €} using
an appropriate viscosity law. In their investigation Lyubarskij et al. [7] introduce
an auxiliary function Y (¢, ¢} through the relation

(%) gric™ = -%(Gﬁafp)”2 Y{e.0) :
where r=p is the contravariant p-component of the radius vector 7 {for ep=0) and
)
M 1 1
6) o™ = J(HO {1+¢ cosqx)[l +ze coscp+—e2(1+4 cosztp)+—e3 cos @ |,
2t p° 3 3 3

(for ¢ =0} is the contravariant pg-component of the shear tensor 6* (i, k=p, ¢).



Taking into account equalities (5) and (6), it is easy to compute
(7N Y(ep = 0,(9): % (1 +ecos @) (3+ e? +7ecos @ +4ezco$2{p+ e’cos (p).

In the model under consideration, the disc evolution is determined only by
the viscous stresses w'=no™(i, k=p, (), where 1 is the intergrated over the disc
thickness viscosity coefficient. It should be noted that according to Syer and Clarke’s
results [6, 12], if the disc viscosity coefficient n is a separate function of streamline
and azimuthal angle @, the rate of change of the eccentricity e with the orbital
phase ae/B(pE ¢, canbe expressed as a perfect differential. From this follows that
orbit averaged value < e, > equals to zero and the later authors conclude that, to
first order of the perturbation theory, the viscous elliptical discs exactly preserve
their eccentricity during the accretion process. In other words, the elliptical discs,
once formed in any way in a Keplerian potential, are long living structures and the
stationary approximation can not be ad hoc excluded from considerations as an
unreal description of the accretion,

III. Power law viscosity

We shall consider the model case of an m =BX" viscosity
law, where the muitiplier B and the power # (0.5=n<3.0) have constant values.
Integrating over p the equation of angular momentum balance, Lyubasskij et al. [7]
have obtained for the case e, =0 the following relation between the shear viscosity

coefficient 1 and the mass accretion rate M :

® Tn(o.6)7 () dg2 [~ D G.me) G5,

where D (B, n, ¢) is an integration constant depending on B, » and e, but not on p
and . In their investigation Lyubarskij et al. [7] have neglected D, limiting their
results to these parts of the disc which are far away from its inner boundary, i.e.,
for p large enough in order to be satisfied M >> D/JGMp. We, however, shall
preserve the constant D. Substituting the adopted power law 1 = BX" into (8) and
taking into account (2), we obtain an expression for the unknown function f (p, e),
similar to eq. (39) in [7]. It includes an angle averaging of the auxiliary function
Y(e, @)

o1 _i y __D(BJL‘?) zﬂy(e»@)d(P A
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where the mass accretion rate M s related to the surface density Z. In this paper
we shall consider M as a constant parameter of the model, having in mind that
for a stationary accretion M does not depend on time 7 and the focal parameter p.
First of all, we note that in the case e=const throughout the disc, (,/EV@)’E (GM[p)™*?
does not include dependence on ¢ and we have to evaluate only the intergrated
over ¢ value of the auxiliary function ¥ (e, ¢). Secondly, we have exact analytical
expressions about the following integrals [13, 14];
2n
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Finally, according to the above relations, we simply have for e =0
2n

[ Y(e.p)do=2n (I 28 ) ~a) Correspondingly:

0

/2 2 iin
f(B,n,p,e):(Gf } \/:[M_D(B,n,e):! ’

3nf

JGMp

[E=cia DB.n,e)
£ M- )
(14) n{B.np.e) 7 t My ]

YL a* MﬂD(B.n,e) i
3nf3 \GMp ‘

These expressions iltustrate the well known result that for constant eccentricity ellip-
tical discs the viscosity coefficient iy and the surface density X are functions on

streamlines only [5-7]. In the outer parts of the disc (for p>> Dz(ﬁ,n,e)/GMM 2y
1 and T become independent also on p and approach constant values:

f Ifn
(16) f B pel=JGM/p (MJI—eZ/SnB)
(17) N B.7 p,€) = Ninax () = M 1= €? /3,
(18) 2B pe)=Z g Bore)= [M V1-é? /3‘m§3}1’[".

For stationary circular accretion discs (e=0, p=r), (16) and (17} transform

- 1/
, M
into the expressions given by Lyubarskij et al. [7]: f; B p)= (oL (-—0] and

: ) | 3w
g =M /3m. : ;

(13)

(L5) Z(B,n,p,e):

’

IV. Boundary conditions

In order to evaluate the integration constant D (B, », ) it is
appropriate to utilize any physically reasonable conditions at the inner boundary
of the accretion disc. Our investigation deals with the stationary case and, conse-
quently, these conditions would also be independent on time 1. Determination of
such boundary conditions may be strongly complicated if general relativistic ef-
fects must be taken into account. But in the later case, as mentioned by Syer and
Clarke {5, 12], differential precession leads to a circularization of the inner parts
of the disc. For this reason we would expect that our supposition of constant
eccentricity orbits with ¢ # 0 throughout the disc is not strictly fulfilled. Neverthe-
less, we shall simply limit us to the Newtonian mechanics description of the inner
disc. But even in that case, the presence of the secondary star may cause a differen-
tial precession because of deviations from a Keplerian potential [S, 11]. We also
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neglect this possibility and assume that giving not very precisely the inner bound-
ary conditions, the global disc structure would not be drastically affected.
Following the suggestion of Shakura and Sunyaev [15], we may suppose that
the viscous stress is nearly equal 10 zero on the last stable orbit with RES YRR e )
np, ... €)= 0. This condition enables us to evaluate the integration constant D (B, n, ¢)

(19) DB ne)=MJGMp,;

through the minimal value of the focal parameter p_. . It should be noted that in
the particular case of circular orbits pmin=3Rg for a nonrotating black hole or a
neutron star with a radius R <3R , where R is the Schwarzschild gravitational
radius. During the transition fromgp>pmiu to §J<pmm the character of the gas par-
ticles motion abruptly changes. The nearly Keplerian orbiting with a slow radial
drift is transformed into a fast radia} falling without enetgy release due to viscous

forces. Similar situation is expected for elliptical orbits if Tiniy = ]&ﬁ“— < 3R, ,where
+e
the transition from one type orbits to another type occures at the pericentre. Ac-

cording to (17) — (19), the expressions for viscosity and disc surface density can be
rewritten in the following form:
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Obviously, the vanishing of the viscosity 1 (P ©=0 at the inner disc edge
implies also vanishing of the disc surface density X(p_., e)=0 at the same place
because of the a priori accepted viscosity law N=PZ". Sometimes it is more appro-
priate to decide that ¥ does not approach zero value at p=p,,.. For example, if
R >3R or the compact object (primary star) is a white dwarf, a Boundary layer is
expected to exist between the accretion disc and the stellar surface. Correspond-
ingly, the disc surface density ¥ will not drop to zero at the inner boundary, More-
over, as we have mentioned earlier, at the innermost region of the disc a circular-
ization of the particle orbits may occur. Then the assumption e=const throughout
the disc is not a reasonable approximation for ali disc radii. Consequently, it may
be preferable to choose Poin 10 be such a value of the focal parameter p, above
which our description of the accretion disc structure {with ,=0} is valid. This
situation suggests that it may be more appropriate boundary conditions of the
considered model to be given at some value p=p,, which differs from the focal
parameter at the inner geometrical boundary of the disc. We are able to modify
(20) = (21) for the case of nonzero density T . le)= Z( P in €)% 0. The result is a
slightly more general form of these expressions:
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Therefore, the problem of determining of the integration constant D{B, n, ¢} in
the angular momentum balance is transformed into the problem of finding of an
appropriate value of the accretion disc surface density ¥ arcund a given stream-
line. This may be more useful situation when the resuits {13} — (15) are applied to
concrete constant eccentricity disc models.

V. Discussion and conclusions

Qur consideration of elliptical acemetion discs 1s limited to
the case of nested cofocal constant eccentricity streamlines. We have also adopted
the approximation of a power law viscosity dependence 3=BZ", where parameters
B and » are assumed to have constant values throughout the disc. We have derived
in an explicit form analytical expressions for the surface demsity X and the integrated
over the disc thickness shear viscosity coefficient 11. According to conclusions of
Syer and Clarke [5, 6], £ and 1 are functions of streamlénes only. Even more, for
the outer disc regions (p > Dz(ﬁ,n,e)/GMMZ) these gquamtities approach con-
stant values. Formulae (20) — (23) can easily be rewritten in the usual polar coordi-
nates (r, ¢) if the focal parameter p is replaced by means of (1): p=r(l+e cos@).
Having in mind that the expected values of n lie approximately between § and 3, a
weak dependence on @ appears in the expressions for X{r, ) and n{r, ). It shounld
be noted that giving of the disc boundary conditions at its inner part may possibly
strike with difficulties (like the Lightman — Eardley installity [16]), in addition to
the other approaches which limit the application of (203 —{23) to the rea! accre-
tion discs. For example, the disc may not have a mirror symmetry with respect to
the direction of pericentre—apocentre, which in our treatment is assumed to be the
same for all ellipces. As pointed out by Syer and Clarke [5], when the eccentricity
exceeds a critical value, the flow is relatively thickened for a section of the flow
downstream of apocentre and, as a conseguence, a prograde precession of the
streamline will follow. They have also mentioned that it is mot clear at present time
whether this mechanism of circularization works for all parts of the accretion dise.

Nowadays it is not doubtfull that elliptical accretion discs may exist at least
around some of the known compact objects, preferably im close binary stellar sys-
tems. The analytical expressions derived in this paper would be usefull for compu-
tation of the theoretical disc brightness distributions and profiles of disc spectral
lines, The later seem highly asymmetric depending on the disc eccentricity ¢ and
the disc inclination to the observer’s line of sight [5, 9]. Changes of the accretion
disc characteristics during the orbital motion will, in principle, give additional
possibilities for verification of the approaches made in the considered model, e.g.,
constant eccentricity ¢ along the disc radius, stationarity, averaging of the disc
parameters over its height, etc.
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EnunTiuny akpeuuoHH OUCKOBE ¢ IMOCTOSHEH
excuenTpunuTet. I Cityuait ="

Humumasp Qumumpos

(Pezrome)

[lonyuenn ca TOUIHN aRAINTHYHY H3PA3H 32 IOBBPXHOCTHATA
IUTETHOCT 2 X KOSQUNUEHTA HA C/IBUTOBHA BICKO3RTET 1) 38 eNUITHYHH aXPeNNOHHK
BHCKOBC C IIOCTOAHEGH CKCHEHTPHUMTET € Ha KOPOKAJHHUTE TOKOBHM JIMHHE Ha
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yacTHUHTE. IIpeanonoxena e anpuopHO cTenexHaTa 3aBHCHMOCT 1=[FX" ¢
IECCTOSHHY MAPAMETPH 3 U 1. BbB BRHINHATE YaCTH Ha JHCKA X M 1} C& CTPOMAT
KbM NOCTOAHHY 3HaY€HHA, 3@BHCCIUHM OT CKOPOCTTA HA AKPElMA Ha BElISCTEO
M B nue. _

Haii-srrpemnaTa obnact Ha AUCKA C€ XapaKTepH3upa ¢ GABHO HAMAISBALIK
Z u M. B nocnennus cnywaii ¢ BBBENSH efMH AOUBIHUTENSH IapaMeTsp (KaTo
COHO TPRHUYHO YCHOBHE) —X ., KOWTO 3a7aBa MOBBPXHOCTHATA INIETHOCT HpH
MHEWAMAJTHO 3HaYeHue Ha GOKanHuA napameTsp p_ . Pasmiemanust mopmen ma

QKpEIHOHEH NHCK € BAJHMAEH IPH AONYCKAHETO Ha CTALHOHADHA akpeuus
M = const,
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